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Abstract

We present a new method for computing the curvature-driven motion of a curve constrained to move on a given sur-
face. It is based on the Diffusion Generated Motion algorithm, and retains both the novel simplicity of that method, as well
as the natural extension to curves with junctions, to general geometric motion laws, and to higher dimensions. The result is
an extremely simple algorithm for curvature-dependent motion on surfaces, wherein the only evolution operation is linear
diffusion in three-dimensional Euclidean space.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The original Diffusion Generated Motion algorithm is a simple procedure introduced in [11,12] to move a
curve in the plane by the curvature motion law. Many generalizations and applications of the method have
been explored [10,13,8,15-17,9,4] and the rigorous theory is developed in [5,1,7,8]. Our purpose here is to
extend the method to moving curves on surfaces while retaining the extreme practical simplicity of the original
diffusion generated motion procedure.

As a computational problem, moving curves on surfaces has previously been addressed using front tracking
and level-set methods [2,3]. While these approaches have the advantage that they allow for arbitrary motion
laws, substantial technical difficulties can arise from geometric complications such as curves with triple-point
junctions, surfaces with boundaries or without orientation, or extensions to higher dimensions. Here, we pres-
ent a fundamentally different approach based on the Diffusion Generated Motion algorithm, which gives a
more limited class of geometric motion laws, but is otherwise notable for the resulting simplicity and robust-
ness of the method.
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The paper is organized as follows. In Section 2 the model for moving a curve on a surface is described and
in Section 3 a review of Diffusion Generated Motion is provided. Sections 4 and 5 generalize Diffusion Gen-
erated Motion to the case of curves on surfaces. Section 6 gives a justification of the method and Section 7
provides an extension to junctions. In Section 8 a variety of numerical experiments are given to illustrate
the numerical properties of the method. Finally, Section 9 concludes with a summary of the main findings
of the paper and a discussion of future work.

2. Model problem for motion of a curve on a surface

Consider a compact curve C that is constrained to move within a surface S. As is illustrated in Fig. 1, our
goal is to evolve C according to a local velocity given by the curvature of C within &
dc
dr
Assuming S is isometrically embedded in R?, the curvature « is simply the orthogonal projection of the three-
dimensional curvature vector of C into the tangent planes of S. Note that this motion is the curve shortening
motion which arises from applying gradient descent to minimize the length of C within S.

Curvature motion on surfaces either drives the curve to collapse to a point or to a condition of zero cur-
vature within S. The latter condition corresponds to a geodesic curve of the surface S. When S is a plane,
curvature motion always has the trivial limit where C collapses to a point. For general surfaces, however,
the curvature of S leads to interesting stationary limiting curves in R?, such as great circles on the sphere,
or spirals on a cylinder. Aside from the natural geometric significance of curvature motion, this and related
motions on surfaces can arise in a wide variety of situations. For example, removing fine scales from a coast-
line on a globe leads to curve shortening motion on a sphere, or regularizing images on pottery leads to curve
shortening motions on the pottery surface. Related motions also arise in models of biological pattern forma-
tion, such as the development of animal coat patterns. For a higher dimensional example, a color image is
abstractly a two-dimensional surface C within the three-dimensional color space S. This is most properly mod-
eled as a curved space, i.e. not a simple Euclidean space, and mean curvature motion of C in § is a form of
intrinsic color image blurring, smoothing or data compression.

For clarity, our presentation focuses on the curvature motion of (one-dimensional) curves on (two-dimen-
sional) surfaces. Nonetheless, the methods developed immediately generalize to moving a curve C of dimension
N — 1 by its mean curvature ks within a curved surface S of dimension N. Methods for treating more general
curvature-dependent motion laws are also possible, as will be discussed throughout the paper.

Ks [C] .

3. Diffusion Generated Motion of curves

In order to extend Diffusion Generated Motion to the motion of curves on surfaces, we begin with a brief
review of the basic algorithm.

Refer to Fig. 2. The curve to be moved, C, is represented as the boundary of a region, R, which in turn is
represented by its characteristic function, y(x),

{1 if x € R,
S
¢ Ky
Y

0 otherwise.
Fig. 1. Motion of a curve on a surface S, with velocity proportional to curvature. The trivial case where S is a plane is shown at left, while
the case of interest here, where S is allowed to be an arbitrary surface, is indicated on the right.

x(x) =
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Fig. 2. The major steps of the Diffusion Generated Motion Algorithm for advancing the curve by a timestep Az: representation by a
characteristic function, diffusion, and thresholding.
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To move the curve in the normal direction with a speed equal to curvature, the Diffusion Generated Motion
procedure alternates two steps. First, diffusion is applied to y for a short time, A¢,

1(x, At) = Dl; At

where D[; #] denotes the diffusive evolution operator for a time z. This is followed by “thresholding” at y = % to
obtain a new characteristic function,

1 if y(x,Af) = 1,
= { b=
0 otherwise.

The corresponding region R(At¢) = {x|y(x) = 1} defines the updated boundary curve, C(A¢). Iterating this
procedure (working entirely in the y representation) defines a curve motion that is discrete in time but contin-
uous in space. In the limit as the time step goes to zero, this converges to motion by mean curvature of the
region boundary, C(¢) [5,1]. (If the thresholding is done at a value other than 1/2, it will produce velocity laws
of the form v = a + bk, with both a constant normal component and a curvature component.)
Note that the diffusive evolution operator, D[y; A7] can be computed either by solving the linear diffusion

equation
Oz 2
Ly
ot z
for time Az, or, equivalently, by convolving with the fundamental solution of the diffusion equation,

X(Xa At) - X(X) * G(Xv At)a
where G(x, ¢) is the three-dimensional Gaussian Kernel

G(x,1) = (dmr) PPexx/),

The latter form has the advantage that it immediately generalizes to convolution against any smoothing ker-
nel, which can be used to generate a wide variety of geometric motion laws [8,15].

Diffusion Generated Motion has a variety of interesting mathematical and numerical properties. Mathe-
matically, it highlights a connection between the fundamental geometric property of curvature and the funda-
mental analytical process of diffusion, which may have a wider relevance beyond the algorithm. It also has
connections with Phase-Field and Level Set models of interface motion (among continuum methods), and Cel-
lular Automata and Huygens Principle models (among discrete methods) [15,16]. From a modeling perspec-
tive, the method naturally generalizes to a broad range of curvature-dependent motion laws and to moving
interfaces with triple-points or general junctions. It also has a number of desirable computational properties.
For example, it handles topology changes and junctions with no special logic, it produces curvature motion
without explicitly computing the curvature and it is unconditionally stable in time. The method also avoids
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introducing a small parameter ¢ which must be simultaneously small enough to adequately approximate the
underlying limiting motion law yet large enough to yield an interface that can be spatially resolved. Finally,
Diffusion Generated Motion is simple to implement, even for complex situations such as mean curvature
motion of interfaces in three-dimensions with topology changes and multiple junctions.

4. Difficulty with intrinsic extension to curves on surfaces

One approach for generalizing the standard Diffusion Generated Motion algorithm to the case of curves
moving on surfaces is to replace the algorithm’s diffusion step (defined in the plane) with the diffusion process
that is intrinsic to the underlying surface. Such a generalization can be achieved either by using the intrinsic
surface Laplacian (Laplace—Beltrami Operator) in the diffusion step, or equivalently by performing an intrin-
sic convolution with the fundamental solution kernel of this evolution. From a practical perspective, however,
either approach can be quite complicated. Solving PDEs on surfaces generally requires writing the equations
in special local coordinate systems (for example, spherical or toroidal coordinates). Several such coordinate
patches will be required to cover the surface, so the simplicity of the standard diffusion equation is lost. On
the other hand, a convolutional perspective does not simplify matters since the fundamental solution kernel
for this process is generally not available in closed analytical form. Similar to the PDE approach, treating
the convolution integral would lead to coordinate patches with appropriate Jacobian area-weighting factors.

Thus, while this direct extension would produce the desired curve motion within a surface, and extend all
the interesting mathematical properties to that setting, it does not retain the attractive simple implementation
of the original method. For this reason, we seek an alternative extension with the goal of practical simplicity.
In the following section, we introduce such an extension, and in a subsequent section we provide computa-
tional examples for diffusion generated curvature motions on a variety of surfaces, including surfaces with
boundaries or edges. It is worth noting that while our concern here is finding a simple way to compute diffu-
sion on surfaces, the same approach gives a simple way to evolve PDEs and carry out general evolution pro-
cesses on surfaces. These intriguing possibilities will be investigated as part of future research.

5. A simple extension to curves on surfaces

To retain the simplicity of the original Diffusion Generated Motion (DGM) algorithm, our generalization
to surfaces should ideally use only the standard diffusion process in the evolution step, rather than using dif-
fusion intrinsic to the surface S. Thus, we first embed the surface S in the standard three-dimensional Carte-
sian space, R®. We must also “embed” the two-dimensional intrinsic diffusion process on S in R*. This can be
accomplished as follows (see Fig. 3): given a function y defined on S that we would like to diffuse on S for a
short time, Az, we first extend y to all of R® by making it constant in the normal direction to S. Then, we apply
standard three-dimensional diffusion to the extended function for a short time A¢. Restricting the diffused
function back to S gives an approximation of the intrinsically diffused form of y, for use within the DGM
algorithm. Intuitively, the fully three-dimensional diffusion is driven only by within-surface gradients, since

X0
o
)
X(t+Ay

S S

/S

—"

Fig. 3. The major steps of Diffusion Generated Motion on a surface: representation as a three-dimensional characteristic function via
closest point extension, diffusion in three dimensions, and thresholding in three dimensions.
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the extended function does not vary normal to the surface. This implies that the method will in effect carry out
the desired within-surface diffusion, at least in the short time-scale of interest. Also, because we care only
about the diffusion near S and for short times, details of the extension far from S and of the “far field” dif-
fusion boundary conditions are negligible.

Thus, we arrive at the following modified (partial) algorithm for the Diffusion Generated Motion of curves
on surfaces: Let the surface S be embedded in R* (without self-intersection) and let E[-] denote an extension
operator that extends any function defined on S to one defined on all of R*. The extension must have the prop-
erty that it is constant in the direction normal to S near S itself. To move a curve C on S, let C be the boundary
of a region R on S, and let y : S — {0, 1} be the characteristic function of this region. Now, extend y to all of
R,

1(x) = E[y].
Next, evolve this function on R* by standard three-dimensional diffusion for short time At,
1(x, At) = Dly; At],

where D is the three-dimensional diffusion evolution operator, defined either by solving the diffusion equation
as above, or by convolving with the corresponding three-dimensional Gaussian kernel. Following this diffu-
sion step, the updated characteristic function y is obtained by thresholding at the 1/2 level:

1if y(x,Ae) =4,
2(x) = .
0 otherwise.

From the characteristic function y we naturally obtain the updated region R(Af) = {x € S|y(x) = 1} and the
desired boundary curve C(A¢). Iterating this procedure gives the time-discrete motion of the curve C(¢) on S,
again in terms of the function y defined on R’.

It is perhaps not immediately obvious that the threshold of 1/2 is consistent with curvature motion since the
local curvature of the underlying surface S might come into play. Fortunately, (and as we shall show in Sec-
tion 6) the threshold value of 1/2 is still valid for a closest point extension.

5.1. The closest point extension

Ultimately, the simplicity of the above procedure depends on the simplicity of the extension process E[']
which will, in turn, depend on the representation of the surface S. An especially simple extension operation
is obtained if the “closest point” representation is chosen.

The closest point function, denoted CP(x), is a vector valued function that returns the closest point on S to
x for each point x € R*; see Fig. 4. A clear connection exists between the closest point function and the signed
distance function to S, d[x; S]. Specifically, the signed distance function gives the distance from x to its closest
point in S, with the direction given by the gradient of d[x;S], i.e.,

Fig. 4. The closest point function for a surface S.
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CP(x) =x—dVd.

Despite this connection, the closest point representation of a stationary surface is in several respects more gen-
eral than a signed distance function representation. For example, closest point representations naturally rep-
resent open surfaces, surfaces with boundaries as well as surfaces without orientation (such as a Mobius strip).
Closest point representations also trivially handle objects of arbitrary codimension and collections of objects
of varying codimension.

For many interesting shapes, such as the sphere and torus, the closest point function can be determined
analytically. More generally, it can be tabulated on a grid and interpolated as needed. In particular, if the sur-
face S itself is defined explicitly by a triangulation, a tabulation of CP(x) on a grid in R* can easily be gen-
erated from the triangulation.

We now return to the issue of how to choose the extension step. Suppose we are given the closest point
function for S. Then the extension of any function f defined on S to a point x € R* is simply f evaluated
at the closest point to x,

E[f](x) =/ (CP(x)).
Applying this simple and computationally efficient extension to our generalization of Diffusion Generated
Motion gives the final form of the algorithm: Given the characteristic function on S that corresponds to

the initial curve, initialize the three-dimensional characteristic function as y(x) = y(CP(x)). Thereafter, alter-
nate diffusion and thresholding steps according to

2(x, At) = DIy; At];

1 if y(CP(x),At) = 1,
T L
0 otherwise.

where D[-; A7] is evolution by solving the diffusion equation or convolving with the Gaussian kernel in three
dimensions.

5.2. A note on generality

This final method can formally be applied to any surface S that is represented by its closest point function.
This includes surfaces with boundaries — i.e. surfaces that are not closed, like one hemisphere of a sphere — as
well as surfaces with edges, such as a cube. Even surfaces that are entirely non-smooth, such as fractals, can in
principle be treated, since the closest point function always exists. Note, however, that the intuitive motivation
underlying the method breaks down at surface boundaries, edges or any non-smooth points where the normal
direction is not well defined. For example, at edges and non-smooth points the extended function exhibits
some form of variation in the direction of the normal at the surface itself. These gradients in the extended
function will interact with the surface diffusion evolution. The net effect is that some form of “boundary con-
dition” or auxiliary forcing is implicitly applied to the curve where it contacts such surface features. How this
influences the curve evolution is not immediately clear, in contrast to the curve evolution on the “smooth inte-
rior” of § which is always motion by curvature.

Empirically, at surfaces with boundaries or edges, the algorithm appears to impose the condition that the
curve crosses any singular curves on S orthogonally. See Section 8.4 for an example. We conjecture that it may
be possible to control this boundary/edge condition by modifying the normal extension in regions of R® where
the normal direction at the closest point is undefined. The relation between such altered extensions and the
effective boundary conditions at singular points on S remains unexplored, and is not intuitively clear. One par-
ticularly desirable modification would be one that imposes some form of geodesic-compatible crossing condi-
tion, so that moving curves can relax by curvature motion to global geodesics even on surfaces with edges,
such as polyhedra.

6. Method justification

It seems likely that both the asymptotics and the rigorous convergence theory that support the original Dif-
fusion Generated Motion algorithm could be extended to our generalization for curvature motion on surfaces.
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Fig. 5. The general properties of Diffusion Generated Motion in higher dimensions induce the cylindrical surface y to move by mean
curvature, which reduces to curvature motion of C within S due to the geometry of the construction.

A study of this type might set a target of showing that the method does generate an initial curve velocity equal
to its curvature within S, and that the timestepping procedure converges to motion by mean curvature. How-
ever, a more elegant justification is available by appealing to the standard DGM method in higher dimensions,
as indicated in Fig. 5.

Note that if the original DGM algorithm is applied to a surface in three dimensions — instead of a curve
in two-dimensions — the resulting Diffusion Generated Motion of the surface is precisely motion by mean
curvature, v = H = k| + k,, where k; are the principal curvatures of the surface [5,1]. In the present context,
we apply the method to the surface which is defined by the extended characteristic function E[y] and let the
corresponding 0/1 interface surface be . In the new method, we apply diffusion to this characteristic func-
tion in R, and by the properties of the original method this displaces the surface y in R* by its local mean
curvature. Clearly, the intersection of this surface iy with the substrate surface S is exactly the curve of inter-
est, C. It is also clear that the curvature of y normal to S is 0 by construction, which indicates that the max-
imum principal curvature of y is in the direction tangent to C in S, and is exactly the curvature of C within
S. Taken together, we find that the mean curvature of i at C in S is exactly the curvature of C within S.
Thus, the standard DGM motion of s induces exactly the desired motion of C within S in the new method.

The above argument applies as long as we are in a neighborhood where C and S are locally smooth. At
points where C or S are not smooth, there is no immediate justification. Non-smooth points in C will generally
be instantaneously smoothed away by the motion, and will thus subsequently move by curvature. In contrast,
non-smooth points of S, such as boundaries, edges or corners, remain uncharacterized and the motion of the
curve C at such points will generally not be purely by mean curvature.

7. Moving curves with junctions

As in the original Diffusion Generated Motion, there is an elegant extension to moving curves with triple-
point junctions or general self-intersections. For completeness, we will briefly describe this extension for
motion on surfaces, which is illustrated in Fig. 6.

Whereas a single curve, C, divides the surface, S, into two components, the region R and its complement, a
curve with multiple junctions partitions the surface into multiple regions, R, R,,...,R,. We extend the
method by representing each such region R; by a characteristic function y; on S. Then, each y; undergoes inde-
pendent closest point extension to R’,

%(x) = 1 (CP(x)),

and then independent diffusion evolution,
%(X, At) = D[y;; At].
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Fig. 6. Extension of the procedure to a curve C with junction points. Each region defined by C is independently diffused and then the
results are coupled by a joint thresholding procedure.

The thresholding step which repartitions these “fuzzy’ sets into a new partition of S is done by simply clas-
sifying each point x according to the largest of the evolved y;, or, in terms of the characteristic functions
themselves,

1 if y(x,At) = z;(x,At), forall j=1,2,...,n,
%(x) = .
0 otherwise.

This defines the single timestep, and the motion proceeds by iteration.

This extension has the property that at the curve C away from junctions, it reduces to the basic motion by
curvature method, and at junctions, breaks up any higher order junctions into triple points, where it imposes
the symmetrical equal angle condition. Note that the complex junction motion is in effect decomposed into n
totally independent linear problems, with a single thresholding step supplying the complex nonlinear
interaction.

Similar to the planar case, any desired angle conditions can be imposed at triple-point junctions by replac-
ing the symmetrical thresholding step with one that is non-symmetrical. The thresholding step for non-sym-
metrical junctions does not have a known analytical expression, but can be constructed numerically in a
straightforward manner. See [13] for details on these thresholding methods and their construction. Also, note
that the y; form a partition of unity on S initially, Z;:] x; = 1, and this condition persists during the evolution,
since it is preserved by the linear diffusion or convolution with a normalized kernel. This is a statement that no
“vacuum regions’ (or “curve fattening”) can open up at the junctions, whereas such pathologies can occur in
certain level-set formulations of junction motion.

8. Numerical experiments

We now apply our methods to some illustrative examples of curvature motion on surfaces, including some
elementary convergence tests and the evolution of junctions and pattern formation models. Following [14],
FFTs on unequally spaced grids are used to carry out the spatial discretization. These methods lead to results
which are essentially free of spatial discretization error, allowing us to better focus on the behavior of the
underlying semi-discrete method.

8.1. Curvature motion on the sphere

Consider first the motion of a circular interface on a sphere evolving according to curvature motion. By
symmetry, the interface remains a circle as it collapses. Moreover, it is straightforward to determine the state
of the system at any time ¢ since the radius of the collapsing circle is governed by an ODE system which can be
solved to high precision with standard ODE methods.

We take the sphere radius to be 0.3 and the initial radius of the circle to be 0.2, as shown in Fig. 7. Con-
vergence is studied by comparing the numerical radius at time ¢=0.02 against the exact result
(0.10963040395421) for various At. To focus on the time-stepping errors, adaptive grids were used spatially
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Fig. 7. Initial conditions for the sphere. As shown in Table 1, applying Diffusion Generated Motion to this problem moves the boundary
between the regions according to curvature motion.

Table 1

Errors for an evolving circle on a sphere

At Error Conv. rate
0.04 0.03871

0.02 0.01798 1.11

0.01 0.00615 1.55

0.005 0.00238 1.37
0.0025 0.00107 1.15

with a finest grid refinement of Ax = 1/512 (cf. [14]). With this spatial resolution, time-stepping errors dom-
inate the error. The absolute errors in the final radius from a number of experiments are reported in Table 1.
These results are suggestive of an approximately first-order error in the position of the front.

8.2. Curvature motion on an ellipsoid

Our second test considers the evolution of a smooth curve on the ellipsoid

R It N et
(0.4)° " (0.3)* " (025

The initial curve is taken to be the intersection of the ellipsoid with the surface

z=20.1cos <4n<x—%)> +04

as displayed in Fig. 8. The closest point representation for this shape was obtained numerically on a
101 x 101 x 101 grid using Matlab’s Optimization Toolkit.

In this case the exact motion cannot be determined by solving a scalar ODE. Instead we study convergence
by comparing the initial velocity produced by diffusion generated motion against the true value at the point
po = (0,0.3,0). In this case the true initial velocity (15.791368) is determined by multiplying a numerical
approximation of the curvature at py by the cosine of the angle between the principal normal to the curve
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Fig. 8. Initial conditions for the ellipsoid. As shown in Table 2, applying Diffusion Generated Motion to this problem moves the boundary
between the regions according to curvature motion.

Table 2

Errors for an evolving curve on an ellipsoid

At Error Conv. rate
0.002 0.2584

0.001 0.1560 0.73
0.0005 0.0924 0.76
0.00025 0.0504 0.88
0.000125 0.0256 0.98

and the tangent plane to the surface at po. As in our previous example, adaptive grids were used spatially with
a finest grid refinement of Ax = 1/512. With this spatial resolution, time-stepping errors dominate the error.
The relative errors in the initial velocity from a number of experiments are reported in Table 2.

These results suggest that the error in the instantaneous velocity is first-order in time at the initial time.

8.3. Diffusion Generated Motion for multiple regions

The evolution of symmetric junctions corresponding to n regions may be carried out using the algorithm for
multiple junctions described in Section 7.

We illustrate the behavior of the algorithm by evolving five (randomly generated) initial regions on a torus.
These initial regions form a variety of junctions as displayed in the upper left-hand corner of Fig. 9. As shown
in Figs. 9 and 10 the evolution leads to several mergers, and an overall simplification of the system. In par-
ticular, note that stable, symmetric triple junctions are observed throughout the simulation and that no special
treatment is required for the topological shape changes that arise as time advances.

A second example involving complex data on the sphere is given in Fig. 11. Here, the various regions rep-
resent countries or ocean, with the underlying country boundaries taken according to the WorldData.m pack-
age in Mathematica 5.2. This defines the boundaries of 174 countries as polygons in angular coordinates, using
a total of 3074 nodes. In this example the process of alternating a Gaussian convolution with a symmetric
thresholding step might be viewed as applying an iterated median filter to the initial country data. Iterated
median filters and related iterated linear filters are processes that can be used to smooth images before extract-
ing information or features. See, e.g. [6] for details.



B. Merriman, S.J. Ruuth | Journal of Computational Physics 225 (2007) 2267-2282 2277

. 0.4
. [
06 07 06

0e 08 07 0s 08

Fig. 9. Junctions evolving on a torus, displayed at times: (a) 0.000, (b) 0.001, (c) 0.002, and (d) 0.004. This simulation takes Az = 0.0001
and uses an analytical representation of the closest point to the torus.

8.4. Diffusion Generated Motion for a surface with edges

Part of the accuracy criteria for Diffusion Generated Motion on surfaces is that the effective support of the
heat kernel must be small enough to resolve the basic curvature of the underlying surface, i.e. the radius of
curvature in each of the principal directions must be much greater than the effective kernel width, v/A¢. This
implies that at an edge, where one of the principal curvatures is zero, the motion is not expected to give the
geodesic crossing condition.

To investigate the algorithm’s behavior near edges, we consider the evolution of an initially straight inter-
face on a box, as displayed in Fig. 12. We find that the interface immediately evolves to intersect edges at right
angles and that this angle condition at edges robustly persists throughout the calculation.

An examination of the closest point extension, E[-], suggests an explanation for the source of the edge con-
dition: the extension biases the convolutional average near an edge towards the value at the edge, leading to a
right angle condition. Note that this explanation suggests that the edge condition is not reliant on the fact that
the box on which the curve is flowing has sides which meet at right angles. We conjecture that an interesting
variety of edge angle conditions can be set up by appropriately modifying the extension process for edges and
corners and plan to investigate such extensions as part of future work.
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Fig. 10. Junctions evolving on a torus (cont.), displayed at times: (e) 0.008, (f) 0.014, (g) 0.019, (h) 0.022.

a a b a c '
Fig. 11. Curvature evolution of the Americas at times: (a) 0, (b) 0.00004 and (c) 0.0004 using a step size of 0.00004. Note that the Matlab

visualization functions result in some spurious color mixing and minor visual artifacts at country boundaries.

8.5. A pattern formation model

Young’s model for vertebrate skin patterns [18] assumes that cells are in one of the two states — differenti-
ated (colored) and undifferentiated. Each differentiated cell produces two diffusive chemicals: a short range
“activator” and a longer range “inhibitor”. The activator stimulates the differentiation of nearby undifferen-



tiated cells and the inhibitor stimulates nearby differentiated cells to become undifferentiated. The combined
effect of these two chemicals is modeled as the weighted difference of concentrations.

Written in convolutional form (cf. [16]), Young’s model in the plane sets y, : R* — {0,1} equal to the
characteristic function for the differentiated region, R. The differentiated region evolves according to the
iteration

Rint = {X: 1z, *K(x) > 0}

until a steady pattern is obtained. Young models the combined effects of activator and inhibitor using a con-
volution kernel
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1. Values on the surface are extended throughout space using the closest point extension, E[:].

2. The extended function is thresholded at the zero level to give a characteristic function defined over R*. Spe-
cifically, non-negative values of the extended function are set to 1 and negative values are set to 0.

3. This new characteristic function is convolved with the kernel K.

This completes one iteration, and the process is repeated until steady patterns are obtained. Similar to [16]
we take K(x) to be the difference of two heat kernels, although more general kernels (e.g., anisotropic kernels
for anisotropic patterns) are also easily accommodated.

Examples of steady patterns on a torus and a Mobius strip appear in Fig. 13. In the simulation on the torus,
the closest point representation was provided analytically. For the Mobius strip, the closest point representa-
tion was obtained numerically on a 101 x 101 x 101 grid. Similar to the case of the ellipsoid, this task was

Fig. 13. Steady patterns after 100 iterations on a torus (top) and a Mobius strip (bottom). Both cases choose a kernel of the form
K(x) = G(x,0/6) — G(x, ) where G(x, 9) is the Gaussian heat kernel with a time-scale parameter d. The torus simulation sets 6 = 0.00025
and the Mobius strip sets 0 = 0.000025.
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accomplished by finding the point which minimizes distance to the two-parameter representation of the
Mobius strip

where 0 < u < 2m and —1 < v < 1. The second example is particularly noteworthy because it illustrates that a
closest point representation of the underlying surface avoids any requirements for the surface to be closed or
even be orientable, in contrast with standard level-set representations of surfaces.

9. Conclusions and future research

We have extended the Diffusion Generated Motion algorithm to the case of curves moving on surfaces,
while retaining the simplicity of the original method. Key aspects to our approach are the use of standard dif-
fusion in one dimension higher than the underlying surface and the use of the closest point representation of
the surface. By choosing the closest point representation we achieve maximal algorithmic efficiency in the
extension step as well as the flexibility to treat open surfaces, surfaces without orientations, objects of codi-
mension two or higher or collections of objects with varying codimension. The resulting method inherits all
the favorable properties of the original diffusion generated motion algorithm, and most notably the extreme
simplicity. Our examples show that complex curve motions on surfaces, including merger, pinch-off, multiple
junctions and the relaxation to complex geodesics, can all be treated by the algorithm. The examples also indi-
cate the extension to other motion laws, such as those for modeling pattern formation, can be achieved
through minor modifications of the convolution process.

The one practical limitation is that this formulation nominally requires computing diffusion in two spatial
dimensions higher than the original problem itself — that is, a moving curve is inherently a one spatial dimen-
sion problem, whereas we perform the diffusion in three dimensions. However, in cases where computational
efficiency becomes critical — such as higher dimensional surfaces — the diffusion calculations can be restricted to
a neighborhood of the surface S, or even just the vicinity of the curve C. This ensures that the effective dimen-
sion of the computational problem approximates that of the intrinsic problem, although development of spe-
cific efficient algorithms remains to be carried out.

Certain issues are unique to this new setting, and require further exploration rather than mere generaliza-
tion of the original properties of Diffusion Generated Motion. Most importantly, it is not clear how to impose
boundary conditions on the moving curve C at boundaries or edges in the underlying surface, S. Of particular
interest are conditions that will allow all geodesics to be stationary solutions. It also remains to develop a suit-
able extension to surfaces that cannot be isometrically embedded in R® without self-intersection, such as the
classic Klein Bottle. However, in such cases it appears that precisely the same algorithm could be applied
within a four-dimensional (or higher) Euclidean space in which surface is embedded without intersection.
Another unresolved problem is to characterize the motions laws that arise when linear diffusion is replaced
by convolution with a general smoothing kernel on R®.

Finally, note that our presentation has emphasized that the curvature motion of curves on surfaces can be
derived via standard three-dimensional diffusion. Alternatively, we can interpret three-dimensional diffusion
coupled with the closest point extension procedure as an extremely simple way to carry out the intrinsic surface
diffusion process that was required for the naive generalization of DGM. From this standpoint, we see that
this paper also provides a simple method for computing surface diffusion. We anticipate that many other evo-
lution processes on surfaces can be treated in a similar manner and will explore this novel direction for gen-
eralization in future research.
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